AnonSec Shell
Server IP : 68.65.120.251  /  Your IP : 18.223.109.25   [ Reverse IP ]
Web Server : LiteSpeed
System : Linux server105.web-hosting.com 4.18.0-513.18.1.lve.el8.x86_64 #1 SMP Thu Feb 22 12:55:50 UTC 2024 x86_64
User : travtpib ( 6521)
PHP Version : 7.4.33
Disable Function : NONE
Domains : 1 Domains
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby34/share/gems/gems/bigdecimal-3.1.8/sample/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ HOME ]     [ BACKUP SHELL ]     [ JUMPING ]     [ MASS DEFACE ]     [ SCAN ROOT ]     [ SYMLINK ]     

Current File : /opt/alt/ruby34/share/gems/gems/bigdecimal-3.1.8/sample/nlsolve.rb
#!/usr/local/bin/ruby
# frozen_string_literal: false

#
# nlsolve.rb
# An example for solving nonlinear algebraic equation system.
#

require "bigdecimal"
require "bigdecimal/newton"
include Newton

class Function # :nodoc: all
  def initialize()
    @zero = BigDecimal("0.0")
    @one  = BigDecimal("1.0")
    @two  = BigDecimal("2.0")
    @ten  = BigDecimal("10.0")
    @eps  = BigDecimal("1.0e-16")
  end
  def zero;@zero;end
  def one ;@one ;end
  def two ;@two ;end
  def ten ;@ten ;end
  def eps ;@eps ;end
  def values(x) # <= defines functions solved
    f = []
    f1 = x[0]*x[0] + x[1]*x[1] - @two # f1 = x**2 + y**2 - 2 => 0
    f2 = x[0] - x[1]                  # f2 = x    - y        => 0
    f <<= f1
    f <<= f2
    f
  end
end

f = BigDecimal.limit(100)
f = Function.new
x = [f.zero,f.zero]      # Initial values
n = nlsolve(f,x)
p x

Anon7 - 2022
AnonSec Team